
SreclreTM-2465A

Greare
A JAVA API FOR LoW-LEVEL SOCKET NETWORK ACCESS

Final Report
Period: December 15, 2004-June 13, 2005

Contract No. W15P7T-05-C-S202

Creare Project 7406

Richard W. Kaszeta
Principal Investigator

Eric M. Friets
Project Engineer

Distribution A: Approved for public release; distribution is unlimited.

SBIR Data Rights

Contract No.: W15P7T-05-C-S202
Contractor Name: Creare Incorporated
Contractor Address: P.O. Box 71, Hanover, NH 03755
Expiration of SBIR Data Rights Period: 13 June 2010

The Government's rights to use, modify, reproduce, release, perform, display, or disclose
technical data or computer software marked with this legend are restricted during the period
shown as provided in paragraph (b) (4) of the Rights in Noncommercial Technical Data and
Computer Software-Small Business Innovative Research (SBIR) Program clause contained in
the above identified contract. No restrictions apply after the expiration date shown above. Any
reproduction of technical data, computer software, or portions thereof marked with this legend
must also reproduce the markings.

20050620 127

@ireare TM-2465A

Declaration of Technical Data Conformity

The Contractor, Creare Incorporated, hereby declares that, to the best of its knowledge and
belief, the technical data delivered herewith under Contract No. WI5P7T-05-C-S202 is
complete, accurate, and complies with all requirements of the contract.

Date ½C •ZS•- -c_ -

Name and Title of Authorized Official - _ ,

DISCLAIMER

This report was prepared by Creare Inc. for the U.S. Army. Neither Creare, nor any person
acting on its behalf, makes any warranty or representation, express or implied, or assumes any
legal liability or responsibility for the accuracy, completeness, or usefulness of the information,
apparatus, method or process disclosed in this report. Nor is any representation made that the
use of the information, apparatus, method or process disclosed in this report may not infringe
privately-owned rights.

Creare assumes no liability with respect to the use of, or for damages resulting from the use of,
any information, apparatus, method or process disclosed in this report.

G'reare TM-2465A

TABLE OF CONTENTS

1 INTRODUCTION ... 1
2 PROJECT SUMMARY ... 1
3 PHASE I OBJECTIVES AND ACCOMPLISHMENTS ... 1

3.1 TASK 1. RESEARCH IMPLEMENTATION OF RAW SOCKET API 1
3.1.1 Design Goals .. 2
3.1.2 Functional Layout ... 3
3.1.3 Security Considerations .. 4
3.1.4 JavaSock API Architecture ... 4
3.1.5 Result .. 4

3.2 TASK 2. DESIGN A PROTOTYPE API ... 4
3.3 TASK 3. REFERENCE IMPLEMENTATION .. 5
3.4 TASK 4. MANAGE AND REPORT .. 6

4 THE JAVASOCK LIBRARY AND API ... 7
4.1 THE JAVASOCK JAVA API .. 7
4.2 THE JAVASOCK NATIVE INTERFACE ... 9
4.3 THE JAVASOCK KERNEL SERVICE .. 9
4.4 JAVASOCK SECURITY .. 10
4.5 EXAMPLE APPLICATION .. 10

5 FUTURE PLANS .. 11

LIST OF FIGURES

Figure 1. JavaSock Architecture, Showing Divisions Between Java and Native
Code, as Well as Divisions Between User and Kernel Code 3

Figure 2. A Sample Swing Application Using the JavaSock API .. 6

LIST OF TABLES

Table 1. JavaSock Java API Abstract and Implemented Classes 8
Table 2. The org.javasock Package Hierarchy ... 8

TM-2465Are are
1 INTRODUCTION

This is the final report for this project that is being performed by Creare Inc. for the U.S.
Army. It covers the time period of 15 December 2004 to 13 June 2005. The overall goal of this
project is to develop a Java API which uses a native code library allowing Java programs to
manipulate raw sockets through a consistent and secure interface. This API allows Java
programs to directly implement low-level networking sockets, such as packet filtering, packet
sniffing and reading of low-level IP or transport layer data.

2 PROJECT SUMMARY

Modem military computer applications are increasingly using the Java computer
language. While Java provides a versatile cross-platform computing environment with strong
security and ease-of-use (java.net.Socket), this support is limited to traditional TCP/IP
socket-style communications, and lacks the ability for the programmer to directly access lower
levels of the network protocol stack, such as raw sockets. Creare has developed a Java API
which uses a native code library allowing Java programs to manipulate raw sockets through a
consistent and secure interface. This API allows Java programs to directly implement low-level
networking sockets, such as packet filtering, packet sniffing and reading of low-level IP or
transport layer data. In Phase I, we researched implementing raw sockets in Java, reported on
the feasibility and implications of such an implementation, and created a prototype API and an
application that demonstrates a subset of this prototype API.

Below is a description of the work performed on Phase I during the reporting period.

3 PHASE I OBJECTIVES AND ACCOMPLISHMENTS

Project Schedule
Month

5 iase
1 . Research Implementation of RawSocket API _

2. Design aPrototypehAPIso docmen t q

3. Reference Implementation

4. Manage and Report
Kickoff Meeting
Progress Reports
Final Results Meeting
Final Report

5. Option Phase

3.1 TASK 1. RESEARCH IMPLEMENTATION OF RAW SOCKET API

The objective of this task was to define and document the required features and
functionality of the desired API.

Sreare
TM-2465A

Under this task, Dr. Richard Kaszeta and Mr. William Finger traveled to Fort Monmouth,
NJ for a kickoff meeting with the technical monitor and staff. At this meeting, the proposed raw
socket API (JavaSock) was presented and reviewed. Based upon discussions at the kickoff
meeting, a target computing platform was chosen (Windows XP), and the desired functionality
of the API and demonstration application was specified (a Java-based Ethernet and IP packet
sniffer).

Based upon a review of existing software packages for providing low-level network
socket access in Java applications, we decided to design our own Java library and low-level
native interface. During the first three months of the project, we developed a plan for developing
our new low-level socket API (JavaSock) by determining the design goals of the API, the
functional layout and structure of the proposed API, the modular architecture of the API, and the
security implications of our proposed API. The result of this research was issued as Creare
Technical Memorandum TM-2440. However, the key conclusions from that report are included
below.

3.1.1 Design Goals

The JavaSock API was developed with a number of important goals.

" General Purpose: JavaSock library needs to provide general purpose APIs that allow
low-level protocol access at the DataLink, Network, and Transport levels of the OSI
7-layer Networking Reference Model. The library has been developed so that the
API should be applicable for a variety of networking programming tasks, such as
packet sniffing, TCP SYN scans, and network monitoring.

" Security: The JavaSock library is designed to provide access to low-level network
communications, which is a sensitive operation. Raw network access, such as
monitoring all the traffic on a network segment, provides a risk to the integrity and
security of both the network (since many of the network security and data integrity
mechanisms can be bypassed) and the computer (since low-level access to the
network interface requires some level of administration privilege). The JavaSock
library is designed to minimize these security risks, and provide access only when a
user has appropriate administrative privileges.

" Platform Independence: The Java language provides an architecture-neutral
programming environment, and therefore, the JavaSock library should be designed in
a manner that allows it to be easily ported to other platforms.

" Efficiency: Due to the possibility of large amounts of network traffic being present
when low-level networking access is desired, the JavaSock library is designed to
operate efficiently, with minimal processing overhead.

" Simplicity: The JavaSock library is designed to be simple and easy to program for
basic network operations, and avoid the need for extensive learning of a complex API
or grammar.

2

@reare TM-2465A

3.1.2 Functional Layout

The JavaSock Raw socket API is structured into three components
(see Figure 1, below): a Java language library, a native interface, and a kernel service module.
The Javasock library (javasock.jar) includes a Java-class hierarchy following the OSI layered
network approach: separate abstract Java classes are provided for access at the Transport (TCP),
Network (IP), and DataLink (Ethernet) levels. Each class includes extensions which provide
handlers for the appropriate network protocols for that layer (TCP and UDP handlers at the
Transport level, IP/ICMP/ARP handlers at the Network layer, etc.) which attach to a lower layer
network handler. At the bottom layer, a native Win32 DLL (javasock.dll) provides a native
interface to the network interface, minimizing the amount of code that is platform-specific, as
well as minimizing the interface between the native code and the Java classes. The network
interface itself is provided as a minimal NT kernel service module.

User Kernel

Java User App

JavaSock Layer
javasock.jar

Java

Native javasock.sys

______________ ___________ -Service

Win32 Native DLL e
javasock.dil

Adapter
._ Specific

"Device"

Figure 1. JavaSock Architecture, Showing Divisions Between Java and Native Code, as Well as

Divisions Between User and Kernel Code.

3

ireare TM-2465A

3.1.3 Security Considerations

The security architecture of the JavaSock library makes use of the fine-grained security
architecture available in Windows. The tightest level of security will involve the kernel level
service, which intercepts incoming packets. During installation, which will require
Administrator privileges on the machine, the service will be configured such that it can only be
started by a user with Administrator privileges. This is performed using the Windows API
function SetServiceObjectSecurity.

Subsequent connections to the service must originate from the same user level process
that started it. This helps guarantee that an orphaned service is not used by a third party for
malicious purposes. Since Administrator privileges were required to start the service, the same
process should still have them while connecting. A process may make several connections to the
service to open different adapters for configuration and capture.

Once data capture is complete, the user level process should stop the service. If this is
not performed, the service will disable itself after an appropriate interval.

3.1.4 JavaSock API Architecture

The structure of the Java API provides powerful network monitoring capabilities from a
simple model. The API handles the vast majority of low-level details, freeing the application
writer to concentrate on their analysis. There are two groups of classes in the API, one that
serves as handlers for layers in the OSI model, and one that serves as data objects for layers in
the OSI model. The API defines an abstract class for each layer, and for its associated data
object. Classes are implemented for common devices and data objects at each layer. The use of
abstract classes forces a coherent structure on applications, while allowing ready extension to
particular devices. It also hides all the native code that interfaces to machine specific devices.

A complete review of the JavaSock API architecture is presented in Section 4 below.

3.1.5 Result

The result of this task was a complete Design Report, issued in mid March 2005. With
the issuing of this report, Task 1 was successfully completed.

3.2 TASK 2. DESIGN A PROTOTYPE API

The objective of this task was to design a prototype Raw Socket API, Java classes, and
the native language libraries. As mentioned in Task 1, the JavaSock API consists of three
modules: a Java class structure, a native interface, and a kernel service module. During the
project, prototype versions of the Java class library (javasock.jar), native interface (javasock.dll),
and the kernel service module (javasock.sys) were developed, the interfaces between the
modules designed and implemented, and the resulting software tested for functionality. The
software development approach used was incremental bottom-up development. The first
component implemented was the NT kernel service module (javasock.sys), implemented initially
as an Administrator-only secure, basic packet capturing service, followed by an extended version
including secure authentication methods and kernel-level packet filtering.

4

treare TM-2465A

Once the NT kernel service was written and tested, the Win32 native DLL (javasock.dll),
which allows the NT kernel service module's services to be accessed through Java's Java Native
Interface (JNI) mechanism, was written and tested, followed by the implementation and testing
of the JavaSock Raw Socket library itself (javasock.jar).

The result of this task was a complete Java low-level socket library, consisting of three
functional, tested modules. These modules serve as the foundation for the demonstration
application developed in Task 3.

3.3 TASK 3. REFERENCE IMPLEMENTATION

The objective of this task was to develop a demonstration application that demonstrates
some of the additional networking support of the API developed in Task 2, using a subset of the
developed API.

In Task 1, it was determined that the demonstration application would be a Java-based
packet sniffer, capable of demonstrating the basic operation of the JavaSock API, including basic
capturing and logging of packet data at the Ethernet Frame, IP Packet, and TCP streams.

Since the JavaSock API is standard Java, it can easily be integrated with other Java
toolkits to create functional raw-socket applications. The JavaSock demonstration application
(screenshot shown in Figure 2) is a functional GUI packet sniffer, implemented using the
prototype JavaSock libraries and the standard Java Swing graphics libraries.

Upon starting the JavaSock Demo application, it starts the kernel service and obtains a
list of the available adapters. These adapters are shown in the panel on the upper left. After
specifying the optional filters, IP and/or UDP, packets are captured by pressing the Start Capture
button. Packets are displayed with their time of capture in the table at the bottom of the display.
After capture is stopped, the packet log may be saved to a file for further analysis. This simple
example serves to demonstrate the ease with which the network may be monitored and incoming
packets filtered to focus on network traffic of interest.

5

@reare TM-2465A

Configuation

fvaiIbio OSflatal-inkDevices

Options

•.yi Acjuili P IT' nit i• f•l to:

Packet Log

Ned _ andler bytes! data -- ---
WdMay 04 09ý27'17..orgjavasock.Ethern 7 0Oal2500Dcid4Oa 08 00 4500 rc51. a,P U

Wed May 04 0-9-2-7:17 j1org javrasock PF`and L 60 145 00 00 3C 54 12 00 (10 20 01_e 881 Oa 06 22 20 Oa_06 22 5..
WNed May 09 27.17...Ior javiasockEt. i)e- !1406100 0 al 22351f000 cfli de M Oa 00 00 45-00 05 70-54 17 cI-- r [- i-
Wed May04• 092•717•.1 orgJavasock lPHandl! 1_392 1450 05 70 54_1 7 •4000 • 064 e Coa 0 22 20 Oa 06 22..
Wed May 04 0922717...oirgjavasock.Etherne !176 00 08 al 22 35 f0 00 0c fl de M4 Ca 08 010 45 00 00 a2 54 3e
Wed May01-4 0927 7. org avamslk IHan d 1 i6n 45 0000 a2i 5 U43 e 4000006 4d 85h Ja 06 22 20 a 0622
We-d-May- 04 09-27.17. [org javasoflk.Etherne J17 loo (10 a-1 22 35 fO0(0 c fl de_14 Ca 00(DO 45 0000167 54 5a
Wed May04 0Dn27.17..orgjavasoc klHandl 103 45 (000t6754 5a 4 f 0 t0000 4d a4 0o-0 6v22 20 Ca a022
WedMany0409`27 1-7.jorg javasockEtherne 17 10008 al 223510(10 fl de 4 Ca 0000_45000067 54 65
WedMay04N 27 J avaSock a PHandi 102 0 5 000 006 4d c90 a 0-22 20 Oa u 622

Wed~~~~~~~~ My00217or aaokEerp1,0008al 22 35 f00 Ocfl del C a 08000 45 00 00 67 54 70 .

Figure2. ASample Swing Application Using the JavaSock API

The result of this task is the completion of a functional Java application that serves two
purposes:

"U Demonstrating the utility and functionality of the complete JavaSock API, and
providing sample source code for using the API.

"" Identifying possible technical issues, performance issues, and security implications of
using the JavaSock API in an actual application.

The demonstration application, the JavaSock API, and support documentation and source
code will be delivered at the completion of the contract, completing this task.

3.4 TASK 4. MANAGE AND REPORT

Under this task, we planned, monitored, and reported the technical progress and expenses
of the project. Principal activities in this task include the formulation and upkeep of the project
plan, allocation and management of technical staff, and preparation of monthly progress reports.

During the reporting period, five progress reports and a final report (this document) were
prepared and submitted. Additionally, the Principal Investigator, Project Engineer, and Chief

6

S'reclreTM-2465A

@reare
Software Architect traveled to Ft. Monmouth, NJ to present the conclusions of the Phase I effort,
as well as demonstrate the JavaSock API and the demonstration application.

With the issuing of the Final Report, this task will be completed.

4 THE JAVASOCK LIBRARY AND API

The JavaSock API is structured into three components (see Figure 1, above): A Java
language library, a native interface, and a kernel service module. The JavaSock library
(avasock.jar) includes a Java-class hierarchy following the OSI layered network
approach: separate abstract Java classes are provided for access at the Transport (TCP), Network
(IP), and Interface (Ethernet) levels. Each class includes extensions which provide handlers for
the appropriate network protocols for that layer (TCP and UDP handlers at the Transport level,
IP handlers at the Network layer) which attach to a lower layer network handler. At the bottom
layer, a native Win32 DLL (javasock.dll) provides a native interface to the network interface,
minimizing the amount of code that is platform-specific, as well as minimizing the interface
between the native code and the Java classes. The network interface itself is provided as a
minimal NT kernel service module.

Each component of the JavaSock API will be discussed below.

4.1 THE JAVASOCK JAVA API

The use of the JavaSock API in a program requires three distinct steps. First, a hierarchy
of objects is constructed, which is a reflection of the desired OSI layers required by the
application. Next, any required packet filters are added to the appropriate layers. Finally,
callbacks must be established to handle matching packets.

The classes of the JavaSock API follow the layers in the OSI Network Model, and
instantiated classes are associated with a corresponding instantiated class one layer lower in the
model. This structure creates a simple model for both filter definitions and packet callbacks.
Filtering is done by the kernel system component, for efficiency. No filtering is required,
though, so every packet on the network can be grabbed for analysis.

The structure of the Java API provides powerful network monitoring capabilities from a
simple model. The API handles the vast majority of low level details, freeing the application
writer to concentrate on their analysis. There are two groups of classes in the API: one that
serves as handlers for layers in the OSI model, and one that serves as data objects for layers in
the OSI model. The API defines an abstract class for each layer, and for its associated data
object. Classes are implemented for common devices and data objects at each layer. The use of
abstract classes forces a coherent structure on applications, while allowing ready extension to
particular devices. It also hides all the native code that interfaces to machine specific devices.

The relevant layers in the OSI model are DataLink, Network, and Transport. The
DataLink layer controls the physical link of communication, and has a data unit of a frame. The
Network layer has a data unit of a packet, and provides end-to-end communications. The
Transport layer establishes connections and transfers data, using packets. Table 1 lists the

7

Greare TM-2465A

abstract and implemented classes, extensions, and filters, while Table 2 shows the Java hierarchy
for the JavaSock API (implemented as the Java Package org.javasock). Additional extensions
can be readily added for other devices, handlers, and data objects.

Table 1. JavaSock Java API Abstract and Implemented Classes
OSI Layer Abstract Implemented OSI Layer Abstract Implemented Implemented
Class Extension(s) Data Object Extension(s) Filter(s)
OSlDataLinkDevice OSIDataLinkFrame

EthernetDevice EthernetFrame EtherTypeFilter
OSINetworkHandler OSINetworkPacket

IPHandler IPPacket IPFilter
OSITransportHandler OSITransportPacket

TCPHandler TCPPacket TCPFilter
_UDPHandler UDPPacket UDPFilter

Table 2. The org.javasock Package Hierarchy

CLAss HIERARCHY:
java.lang.Object

"o org.javasock.Filter
"o org.javasock.EtherTypeFilter
"o org.javasock.IPFilter

o org.javasock.IPFromToFilter
"o org.javasock.MatchFilter
"o org.javasock.NullFilter
"o org.javasock.TCPFilter
"o org.javasock.UDPFilter

"o org.javasock.PacketHandler
"o org.javasock.OSlDataLinkDevice

o org.javasock.EthernetDevice
"o org.javasock.OSINetworkHandler

o org.javasock.IPHandler
"o org.javasock.OSITransportHandler

o org.javasock.TCPHandler
o org.javasock.UDPHandler

"o org.javasock.PacketStatistics
INTERFACE HIERARCHY:

o java.util.EventListener
o org.javasock.PacketListener

There are no constructors for devices at the DataLink layer. A static method of
OSIDataLinkDevice returns an array of devices that are running and accessible to the operating
system. Constructors for the handlers require a reference to a handler or device to which it will
be attached. Thus, the devices and handlers are structured in a tree that corresponds to the OSI
levels and to the way data flows up and down the levels.

The tree of instantiated classes operates in two modes. In configuration mode, branches
may be added to the tree, and filters may be set up. In operational mode, the structure and

8

Greare TM-2465A

filtering are fixed, and data from the network that matches the filters are passed up the tree for
logging and analysis.

Filtering is set up at each branch of the tree. For example, to monitor traffic between two
hosts, a filter would be set in the IPHandler class. Each branch also sets up a generic filter,
which checks for the appropriate type of frame or packet. In the case of IPHandler, only frames
containing IP packets as payload would be passed to it.

To begin filtering and capturing packets, the OSIDataLinkDevice startCapture method is
called. The tree is traversed, and the filters accumulated. The filters are converted to a simple
and secure binary format, described below, that the kernel service can efficiently evaluate. The
developer need know nothing about the details of this binary format, they simply specify the
filters.

When the kernel service identifies a frame that matches the filters, it passes the frame to
the native DLL, which in turn issues a callback to the Java API. The callback includes which
handlers the filtering matched, so the filtering does not have to be repeated. Each node in the
tree issues callbacks as appropriate. These callbacks are issued by the abstract class, so the
developer need only implement the callback method, in which they perform whatever analysis or
logging is appropriate to the task at hand. If the kernel service is unable to sustain the
throughput, packets are dropped.

4.2 THE JAVASOCK NATIVE INTERFACE

Directly below the Java layer is the native shared library. This module serves as the
interface logic between Java and the kernel level code. This code will be platform dependent,
but the native interface presented to the Java layer will be identical for all platforms. The
Windows implementation, javasock.dll, will start the JavaSock service, forward the list of
adapters to the Java layer, and make connections to the service to support packet interception for
one or more adapters. It will also handle issues which arise in managing memory between the
service and Java.

4.3 THE JAVASOCK KERNEL SERVICE

The Java Sock Kernel Service performs packet interception and filtering as requested by
the user. The Windows implementation will reside in javasock.sys. The code in this module
determines the list of network adapters available on the machine, and provides it to the user level
module. It provides a means for the user level code to open and request packets, with optional
filtering, from one or more adapters. It will filter out packets which do not meet the inclusion
criteria specified by the user application, in as rapid a means as possible. This is of critical
importance when the service is running on a public server, which may have hundreds or
thousands of requests per second. The service will provide a means for the user level code to
receive the contents of matching packets.

The Kernel Service functions cannot be called directly by user leyel code; instead, they
are called as a result of operations on the service and device objects opened by code contained in
the DLL. When the service is registered, and when the virtual "devices" which correspond to the

9

G'reare TM-2465A

adapter capture interfaces are created, these functions are mapped to specific kernel operations.
For example, when the Windows API function StartService is called, our kernel function
DriverEntry will be invoked by the kernel. DeviceOpen will be the result of a CreateFile
call, etc.

4.4 JAVASOCK SECURITY

The JavaSock API has a strong emphasis on security. The existing JavaSock API's
security architecture makes use of the fine-grained security architecture available in Windows.
The tightest level of security will involve the kernel level service, which intercepts incoming
packets. During installation, which will require Administrator privileges on the machine, the
service will be configured such that it can only be started by a user with Administrator
privileges. This is performed using the Windows API function SetServiceObjectSecurity, or
indirectly with an installation LNF script. Similar security features are available on the Linux and
Mac OS platforms, and will be used if the JavaSock API is ported to those platforms.

Subsequent connections to the service must originate from a user with sufficient access
privileges. This helps guarantee that an orphaned service is not used by a third party for
malicious purposes. Since Administrator privileges were required to start the service, the same
process should still have them while connecting. A process may make several connections to the
service to open different adapters for configuration and capture.

Once data capture is complete, the user level process should stop the service. This
happens automatically if the shared library is unloaded (i.e., the calling process terminates). If
this is not performed, the service will disable itself, preventing further accesses, after an
appropriate interval of inactivity.

4.5 EXAMPLE APPLICATION

The following source code illustrates the use of the JavaSock API in a simple console
based packet logging tool:

PacketListener pl = new PacketListener()
public void packetReceived(

PacketHandler handler,
java.nio. ByteBuffer data,
java.util.List chain,
PacketStatistics stats)

{
System.out.println(handler.getClass() .getName());
printPacket (data);

I

OSIDataLinkDevice[] devices =
OSIDataLinkDevice. getDevices (;

OSIDataLinkDevice osld = devices[O];
osld.addPacketListener (pl);

IPHandler iph = new IPHandler(osld);

10

ireare TM-2465A

iph.addFilter(new IPFromToFilter(
InetAddress. getLocalHost (,
InetAddress. getByName ("host. domain. com")

)H;
iph. addPacketListener (pl);

osld. startCapture (;
System.in.read(; II Wait for user to press enter
osld. stopCapture);

Sample output from this test program might resemble something like:

org. j avasock. EthernetDevice
78 bytes received:
00 Od 56 70 28 20 00 08 al 22 35 fO 08 00 45 00
00 40 f4 4b 00 00 80 11 08 d7 Oa Ob 22 5d Oa Ob
07 18 Oa 25 00 35 00 2c ec 7d 74 d8 01 00 00 01
00 00 00 00 00 00 07 64 69 6c 62 65 72 74 06 63
72 65 61 72 65 03 63 6f 6d 00 00 01 00 01

org. javasock. IPHandler
64 bytes received:
45 00 00 40 f4 4b 00 00 80 11 08 d7 Oa Ob 22 5d
Oa Ob 07 18 Oa 25 00 35 00 2c ec 7d 74 d8 01 00
00 01 00 00 00 00 00 00 07 64 69 6c 62 65 72 74 These
06 63 72 65 61 72 65 03 63 6f 6d 00 00 01 00 01 represent

IP packets
org. javasock. EthernetDevice

fo packets

62 bytes received: from locaihost.
00 Od 56 70 27 10 00 08 al 22 35 fO 08 00 45 00
00 30 f4 4d 40 00 80 06 c9 06 Oa Ob 22 5d Oa Ob
07 01 Oa 26 00 17 a5 17 08 cO 00 00 00 00 70 02
ff ff 8d 97 00 00 02 04 05 b4 01 01 04 02

org. javasock. IPHandler
48 bytes received:
45 00 00 30 f4 4d 40 00 80 06 c9 06 Oa Ob 22 5d
Oa Ob 07 01 Oa 26 00 17 a5 17 08 cO 00 00 00 00
70 02 ff ff 8d 97 00 00 02 04 05 b4 01 01 04 02

5 FUTURE PLANS

The central objective of the proposed Phase II effort is to develop and enhance the
JavaSock API, adding support to the API for writeable (outgoing) network connections,
multiplatform support, and support for additional network devices and protocols.

To accomplish these objectives within the scope of the Phase II timeline and resources,
we will focus on developing a fully functional API and demonstration applications on the
Windows XP platform, while developing the multiplatform and additional network support

II

SreareTM-2465A

,Greare
sufficiently to demonstrate JavaSock's full potential. In support of this goal, we have identified
the following objectives:

1. Define the complete JavaSock API for read/write low-level network support. The
JavaSock API developed in Phase I fully supports low-level network access in a
read-only manner. During the Phase I effort, a draft extension to the API for
including writeable packet support was written, but still remains to be implemented.
Full implementation of writeable packets in the API is a cornerstone of the Phase II
development, greatly increasing the usability and applicability of the JavaSock API.

2. Develop the JavaSock API on Windows. Once the API for writeable packet support
is developed, the resulting API needs to'be implemented. Since the Phase I JavaSock
API was developed under the Windows operating system, the initial version of the
Phase II JavaSock API will be developed on Windows as well.

3. Extend the JavaSock API to support additional platforms, network devices and
network protocols. A key feature of the JavaSock API is that the majority of the
library is implemented at the Java level, with only a minimal portion of the code
implemented as native code (accessed through JNI). This approach maximizes
security (the native code is limited to a small, easily reviewed library, while the
majority of the code runs under Java, retaining Java's strong security model), while
also allowing extendibility and modular design. The JavaSock library can be ported
to other Java-supported platforms by rewriting the small native kernel portion (the
Java portion remains platform independent). Similarly, the JavaSock API can be
extended to support additional network devices (802.1 1(b/g) networks, DSL,
Bluetooth, etc.) through simple modifications to the kernel service, and additional
network protocols (ARP, ICMP, JREAP,1 SCPS,2 etc.) by simply extending theexisting JavaSock network classes and methods.

4. Demonstrate the JavaSock API and demonstration applications. Once the API is
designed and implemented, demonstration applications can be written to test the API
implementation, demonstrate the capabilities of the JavaSock API, and serve as
example source code for other development efforts.

Interoperability Standard for the Joint Range Extension Application Protocol (JREAP), MiI-STD-301 1,
Sept. 30, 2002.

2 SCPS-Space Communication Protocol Standard, http://www.scps.org/.

12

